

B.C.A., B.SC. DEGREE EXAMINATION - COMPUTER APPLICATIONS & COMP.SCI.

FIRST SEMESTER - NOVEMBER 2018

MT 1103 - MATHEMATICS FOR COMPUTER SCIENCE

Date: 24-10-2018	Dept. No.	Max.: 100 Marks

Time: 01:00-04:00

PART-A

Answer ALL the questions:

 $(10 \times 2=20)$

- 1. State Cayley Hamilton theorem.
- 2. Find the sum and product of the eigen values of $A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$.
- 3. Prove that $\cosh^2 x \sinh^2 x = 1$.
- 4. If α and β are the roots of $2x^2 + 3x + 5 = 0$, find $\alpha + \beta$ and $\alpha\beta$.
- 5. Evaluate $\int \tan^2 x \, dx$.
- 6. Evaluate $\int xe^x dx$
- 7. Form the partial differential equation by eliminating the arbitrary constants from z = ax + by + a + b.
- 8. Find the complementary function for $(D^2 + 2D + 1)y = 0$.
- 9. Write the formula for Simpson's 3/8 rule.
- 10. Write Newton's backward difference formula for first and second order derivatives.

PART-B

Answer any FIVE questions:

 $(5 \times 8 = 40)$

- 11. Find the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$.
- 12. Show that $\frac{\cos 5\theta}{\cos \theta} = 1 12\sin^2 \theta + 16\sin^4 \theta$.
- 13. Solve $x^4 10x^3 + 26x^2 10x + 1 = 0$.
- 14. Find the radius of curvature of the curve $\sqrt{x} + \sqrt{y} = 1$ at the point $\left(\frac{1}{4}, \frac{1}{4}\right)$.
- 15. Evaluate $\int \frac{5dx}{6x^2 x 1}$.
- 16. Solve $\int_{0}^{1} \int_{x}^{\sqrt{x}} (x^2 + y^2) dy dx \int_{0}^{1} \int_{1}^{2} (x^2 + y^2) dx dy.$
- 17. Solve the equation $(D+7D+12)y = e^{2x} + 6$. Error! Digit expected..
- 18. Find by Newton Raphson method, the real root of $x^3 5x + 3 = 0$, correct to three decimal places.

PART - C

Answer any TWO questions:

 $(2 \times 20=40)$

- 19. Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$ and hence find its inverse.
- 20. (i) Evaluate $\int \frac{2x+1}{x^2+3x+1} dx$.
 - (ii) Using reduction formula evaluate $\int \cos^7 x dx$. (13+7)
- 21. (i) If $\sin u = \left(\frac{x^2 + y^2}{x + y}\right)$, show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \tan u$. (ii) Solve $p \tan x + q \tan y = \tan z$. (10+10)
- 22. Evaluate $\int_{-3}^{3} x^4 dx$ with h=1, by using (i) Trapezoidal rule, (ii) Simpson's 1/3 rule,
 - (iii) Simpson's 3/8 rule. Verify your results by actual integration.
